Crop Module: Cauliflower
Effective 1st September 2015
This crop specific module for cauliflower has been written to complement and avoid duplicating the generic principles of the Red Tractor Farm Assurance Fresh Produce Scheme standards. It is advisable to read the Red Tractor Farm Assurance Fresh Produce standards before reading this crop specific module. This module is designed to stimulate thought in the mind of the reader. It contains crop specific guidance and standards, where applicable, in addition to the requirements stated in the generic Fresh Produce standards.

Within this module the important requirements outlined in the crop specific standards section will be verified during the Red Tractor Farm Assurance assessment and compliance will form a part of the certification/approval decision.

Disclaimer and trade mark acknowledgement

Although every effort has been made to ensure accuracy, Assured Food Standards does not accept any responsibility for errors and omissions. Trade names are only used in this module where use of that specific product is essential. All such products are annotated® and all trademark rights are hereby acknowledged.

Notes: Pesticide Information

The Red Tractor Fresh Produce team has been working with Fera to provide tailored access to the LIAISON database for all Red Tractor Fresh Produce members. This system allows individual growers access to all information for plant protection products approved for use under the Red Tractor Fresh Produce Scheme.

LIAISON can be accessed under the Produce tab via the “Checkers and Services” page where you will also find a user manual. Searches will be filtered specifically for the crops for which you are registered. Once you have logged onto the site and clicked on the LIAISON hyperlink you will be directed to the LIAISON home screen.

You will need a username and password and these will be sent once you have registered:

http://assurance.redtractor.org.uk/rtassurance/services/Registration/members.eb

General Introduction

Following a systematic approach will help growers identify and manage the risks involved in crop production. This module is based on a typical crop production process and food safety, health & safety, environmental and quality hazards are identified. Appropriate controls may then be established to minimise risk. Food safety and health & safety issues always take precedent over quality and environmental controls. The layout of this module follows the same structure as that used in the Red Tractor Farm Assurance Fresh Produce Standards. The content of the module is reviewed prior to the issue of updated editions. The review process considers both new developments and all relevant technology which has emerged since the last review was completed and which have been found to be both workable by the grower and beneficial to the environment. The aim is to transfer such information and technologies to growers.

Acknowledgements

Red Tractor Farm Assurance Produce gratefully acknowledges the contribution of all consultees in the preparation of this protocol, particularly members of the Brassica Growers Association and Andrew Richardson, Allium & Brassica Centre, Kirton, Boston, Lincs.
STANDARDS

HOW YOU WILL BE MEASURED

RECORDS (to be kept for 2 years)

CQ.56.a
Continuous production of brassicas can be achieved without detriment to crop quality. In such cases growers must be able to justify their rotation

The following has been considered:
- Crop health
- Avoidance of disease carry over by incorporating post-harvest residues quickly and efficiently
- Satisfactory record of pH levels and liming policy

Records of pH levels
- Liming policy

CQ.56.b
Nutrients must be applied according to soil analysis

- Soil analysis results
- Fertiliser/nutrient application records

CQ.56.c
Once cooled cauliflower must be held at the target temperature, even in holding stores

- A minimum of 6°C in 12 hours
- Store temperature records

None for this crop module
GUIDANCE

CHOICE OF VARIETY OR ROOTSTOCK AND PLANT HEALTH CERTIFICATION

VARIETY SELECTION

None of the commercially important varieties at present have resistance to all four major diseases (downy mildew, ringspot, white blister and club root). Some varieties under certain prescribed conditions can be susceptible to hollow butt.

In future, provided they have good commercial qualities, disease resistant varieties should be included in any integrated crop management system.

Varieties are classified into four maturity groups:

Early summer cauliflower

Early summer cauliflowers are defined as those grown from an autumn sowing in October and over-wintered in a juvenile stage under cold glass, or those sown under heated protection in January. By sowing varieties with different lengths of maturity, curds may be cut from late May to early July.

Late summer and autumn cauliflower

Cauliflowers for late summer production are sown under glass from February to April and mature from late July to early September. Autumn cauliflowers are sown under glass during late April to mid-June and mature from mid-September to mid-November or the first frost.

Winter cauliflower

Cauliflower maturing from December through to early March are very susceptible to frost, growing is usually restricted to milder coastal areas of Kent and the south west.

Winter hardy cauliflower - spring heading

These mature from early March until early June.

SITE AND SOIL MANAGEMENT

SITE HISTORY

When selecting a site for growing a cauliflower crop it is important to consider the following requirements.

Climate

The crop can be grown throughout the UK. Winter cauliflowers, maturing from late December to March, can only be grown in the UK in areas where frosts are infrequent and the winter temperatures are relatively high; viz. in fields situated near the coast below an altitude of approximately 90m in the south western counties of England (particularly Cornwall, west coast of Wales and the Channel Islands and also the on the Isle of Thanet in Kent). In drier areas of the South and East, irrigation may be required during periods of drought to maintain continuity.

Weed status

Perennial weeds such as couch, docks and thistles should be controlled prior to planting/drilling a crop of cauliflower. The presence of potato groundkeepers can also be a problem to control in the growing crop and should be considered at the planning stage.

Topography

Fields should be suitable for the use of harvest machinery and safe for the use of spraying machinery avoiding the risk of toppling over. Use of fields sloping to the South and West should be made for early production. Avoid valley bottoms or other frost susceptible areas. In wet areas it can be advantageous to be exposed to prevailing winds, so the crop dries out quickly and helps reduce the spread of disease.

POSITION

Access

Easy access into the field is necessary to facilitate the use of spraying and harvesting machinery.

Pest havens

Avoid heavily wooded field margins and wasteland, where pests such as rabbits, hares and pigeons can devastate crops. Also any rodent colonies should be identified and controlled.

Obstacles

Pylons, telegraph poles, walls and fences make it difficult to operate spraying and harvesting machinery without crop damage.
Spraying Safety

a. To humans: where possible avoid cropping areas adjacent to schools, housing estates, playing fields etc. where there is a high risk from spraying operations.

b. To flora: avoid areas adjacent to wildlife reserves, sites of specific scientific interest. Note the position of any beehives.

c. To watercourses: buffer zones now apply, prohibiting the spraying of certain pesticides within 5 metres of the top of the bank of a watercourse when using a ground-based vehicle mounted/drawn sprayer. Protocol operators should be aware of LERAP regulations introduced in 1999. Further information can be obtained from local NFU offices.

Rotation

Crop rotation can be used to assist with crop health in conjunction with other practices.

Club root is a problem in some brassica production areas particularly on naturally acid soils. Production in these areas should be based on a wider rotation of four to five years between brassica crops together with a well-planned liming policy. However certain areas are uniquely placed for a frost-free climate enabling good early production, requiring a balanced approach to be taken.

Brassicas thrive best on moisture retentive high alkaline situations and often continuous production can be sustained without detriment to crop quality or to the environment. In such cases growers must be able to justify their rotation with consideration to the following:

a. Crop health

b. Avoidance of disease carry over by incorporating post-harvest residues quickly and efficiently

c. Satisfactory record of pH levels and liming policy

SOIL MANAGEMENT

Soils

The cauliflower plant is not deeply rooted and some varieties are particularly shallow rooting. The crop can be grown successfully on a wide range of soil types provided they are well drained, of good structure and without any impediment to root development such as soil pans caused by poor cultivation techniques. Light sandy soils favour early production but irrigation is essential on these soils to guarantee good plant establishment, whether direct drilled or transplanted, and for subsequent growth and development throughout the summer period. Cauliflowers require moisture throughout their growing period.

A pH level of 7.0 to 7.5 is required, particularly where club root may be a problem. Over liming is wasteful and can cause temporary ‘lock-up’ of some nutrients such as manganese and boron. Lime should be applied well before planting/drilling if possible. As lime takes many months to balance soil acidity it is not advisable to grow brassicas where liming has recently been carried out in very low pH situations. Consideration should also be given to potential soil structure damage caused by harvesting on heavier soil types, particularly with winter cauliflowers.

Cultivations

Whether the crop is drilled to a stand or transplanted, firm soil with a good tilth is required. Timely cultivations are important, particularly on fine, sandy, or silty soils that have a weak structure and low organic matter content. On lighter soils late ploughing followed by a minimum of cultivations will help to maintain soil structure. Wheelings, from planting cultivations may cause compaction, therefore, the bed system is to be commended. On large units, the tramline system where two crop rows are left out for the passage of a tractor with wide tyres facilitates easier fertiliser application, spraying, irrigating and access for harvesting equipment, in addition to confining wheel damage to a designated area.

Loss of soil structure in the surface layers, due to excessive or inappropriate cultivations, e.g. excessive working with reciprocating tines at high speeds can lead to soil capping and reduced emergence.

DRILLING AND TRANSPLANTING

Plant populations

Plant population has important effects on:

a. Total yield.

b. Curd size and weight for market outlets.

c. Market for which the crop is grown.

d. Period over which the crop is to be harvested.

e. Cost of production.

The higher the plant population, smaller the head, thus baby cauliflowers are grown at high plant populations.
SOWING

Owing to the increased cost of seed and establishment costs, direct drilling is no longer an economic proposition for the continuous production of cauliflowers. Apart from the early summer production where large modules/pots/ blocks are used, the bulk of the UK crop is transplanted using 14ml modules.

TRANSPLANTING

Propagation

The majority of the transplanted crop is grown from glasshouse raised modular transplants or small peat blocks. The modular trays (the most common size has cells of 14ml volume containing peat compost) enable the propagator to have complete control over plant growth. Trays also provide a system that facilitates the application of cabbage root fly insecticides under glass, prior to despatch. This uses less active ingredient per hectare than field applications (See Appendix).

To ensure the best chances of good establishment, growers should ensure that transplants are:

- Strong and well rooted in the module.
- Transplanted when plants are ready and not left too long in module.
- Adequately drenched for cabbage root fly where necessary.
- Are free from pest and disease.
- Are fully soaked and primed with nitrogen immediately prior to planting.

Soft, floppy plants are undesirable and can have adverse effects on establishment.

Plants should be given a high nitrogen feed prior to despatch. Growers, especially those without irrigation, should ensure that the modules are at maximum water holding capacity at planting. Avoid over watering as this can leach out cabbage root fly insecticides. It is advantageous for the grower to have modules analysed routinely to check whether the propagator has applied the correct rate of cabbage root fly insecticide. This is especially important prior to the peaks of first and second-generation cabbage root fly. For those with irrigation, if the soil is dry or the weather hot or windy, water should be applied immediately post planting.

Propagators

Under EU Plant Health Regulations, propagators should be registered with the Plant Health and Seeds Inspectorate (PHSI) of DEFRA. Plant passport details should be incorporated on the delivery note or invoice.

Growers should ensure, to comply with the requirement of due diligence throughout the food distribution chain, that details of all pesticides are agreed and recorded by the propagator and passed to the grower. Applications of liquid feeds should be treated similarly.

Early production under covers

This technique needs easily worked soils with excellent structure and with the exception of the silts, irrigation should be available.

There is a disadvantage with narrower sheets due to an “edge effect”. So 10-12 metre wide sheets of perforated polythene are the most economical forms of covering. Before laying the plastic cover, it is important that the plants are strong enough to carry the weight of the covers. Alternatively, plant in shallow ridges so that the soil may support the cover for a time.

The activity of herbicides under plastic film can be erratic. This may be due either to high light intensities and warmth accelerating the breakdown of the herbicide or to the drying out of the soil surface. It is important that residual herbicides are applied to moist soil or to a soil moistened soon after treatment, before the crop is covered with film.

Physiological problems soon arise if covers are left on too long. Uncover when the heads are just visible (10-15mm in diameter). Crops should also be uncovered if the weather conditions are hot and humid. It is worth sacrificing crop advancement in exchange for a reduced disease problem.

Covers should be removed on a dull day or in the late afternoon.

By using polythene film skilfully, crop maturity can be advanced by 14 days. The cost of plastic and associated laying and removal is expensive and usually only justified on early crops that command a premium.

Disposal of plastic

To comply with legislation, and protect the environment, plastic should not be burnt. Growers should ensure that old polythene is either despatched to a recycling company or disposed of in a registered landfill site.
ENVIRONMENTAL PROTECTION & CONTAMINATION CONTROL

PEST, DISEASE, PHYSIOLOGICAL DISORDERS AND WEED CONTROL

Pest control

The main principle, with the exception of cabbage root fly, is that control measures should only be applied when the pest is present. Routine applications of insecticides at set time intervals, is not the correct approach. Prevention is also better than cure, therefore where possible, an integrated approach is needed.

Prevention:

i. Management and Planning: where geographical and agricultural factors permit choose sites away from existing brassica and rape production to avoid a continuous ‘green bridge’ throughout the year. Plough in crop residues immediately cutting ceases

ii. Crop rotation

iii. Provide good soil structure, correct nutrition and irrigation if possible to ensure conditions to facilitate strong, healthy growth

Control:

i. Use available pest forecasts as management tools to aid when to scout for pests

ii. Crops should be regularly and systematically inspected to monitor crop development, pest and disease levels. Increase frequency of crop walking during periods of high pest incidence particularly during hot weather

iii. In addition to crop walking, consider the use of insect traps e.g. pheromone traps, chemical attractant traps and soil sampling (cabbage root fly eggs) as monitoring tools

iv. Identify both pest and naturally occurring predators, to determine whether necessary to apply control measures and where possible use selective pesticides to reduce impact on naturally occurring predators and beneficial organisms. However, choice should be weighted up against efficacy and longevity of treatment. Use the least toxic product where possible

v. Insecticide resistance is now common within populations of peach potato aphid. It is important to alternate the use of different active ingredients to enable the best chance of control with the existing range of active ingredients

vi. Use the minimum effective dose rate, normally being that recommended. Do not reduce dose rates for peach potato aphid

vii. Consider the use of natural and biological methods of pest control if available

viii. Avoid spraying, or allowing drift into grassy banks, dyke sides, hedgerows etc., these can provide a reservoir of insect predators, such as ladybird larvae, hoverflies, ground beetles etc. However, also consider the implications of buffer zone restrictions on certain chemical uses

ix. Carefully consider the anticipated harvest date when selecting the appropriate product. Ensure you have enough time for the harvest interval to elapse prior to harvesting

The use of some approved pesticides may not be acceptable to processors. In order to conform to such requirements, proposed applications should be confirmed with the contracting company.

This section reviews the main brassica pests in the UK. A review of the minor pests can be found in the Appendix.

Cabbage root fly (Delia brassicae)

Even light attacks by larvae, which feed on the roots, can reduce yield. Severe infestations cause stunting, bluish or red/purple discoloration of the leaves and the plants may wilt and die. There are three generations each year, starting from fly emergence and egg laying in late April - early May and extending, with some overlapping into September. Preventive treatments are essential for the peak of the first generation, irrespective of whether the crop is direct drilled or transplanted.

The eggs of cabbage root fly are attacked by several beetle species. These beetles remain in the soil for long periods; insecticides applied to other crops in the rotation can reduce their numbers making it difficult to predict how effective they may be at reducing cabbage root fly damage.

Forecasting/monitoring

Present monitoring methods include counting eggs laid at the stem base of brassicas to predict the size of the next generation and the use of non-selective water traps to catch adult flies. The Warwick Crop Centre computer prediction model gives the timing and duration of populations based on statistical information and local weather data.

A chemical attractant trap is available that selectively traps adult flies and thus in future a combination of this trap and the Warwick Crop Centre computer prediction model will give a more reliable monitoring system.
PLANT PROPAGATION

Pre-planting drenches
Chlorpyrifos or spinosad can be used as a pre-planting drench on block and module raised plants. Do not use on cells smaller than about 14ml capacity. Chlorpyrifos should not be used to treat block/modules which will be planted out before April 1st.

When drenching with chlorpyrifos, ensure it does not become washed or leached into glasshouse soils. Where plants are treated outside glasshouses, safe disposal of all run-off drench is required. Where chlorpyrifos drenches are used, subsequent applications of pesticides in the glasshouse or herbicides in the field should be delayed until adequate wax has re-formed on plant leaves.

Transplanted crops
a. Crops grown from block or module raised plants, which were treated before planting (as above), should not need further treatment in the field. However, there are occasions where subsequent treatment is necessary:

b. Where, due to planting delays, considerable irrigation has been applied which may have led to leaching of the insecticide

c. Insufficient insecticide applied by propagator (maintain a check at planting by routine analysis of compost)

d. Early in the season, when the incorporated treatment is not persistent enough to protect the young plants up to the first peak of egg laying

e. In the absence of irrigation, when upper layers of the soil are dry or soil conditions are cloddy, it is essential to plant deeper in search of moisture for the plants to survive. This necessitates covering the module with soil and this renders the stem at soil surface level open to attack.

TREATMENT METHODS

Granules
There are currently no approved granules for field application.

Brassica aphids
There are two species of aphid that are of commercial relevance to the cauliflower crop.

Mealy grey aphid (*Brevicoryne brassicae*)
A widespread pest of cauliflower, which checks the growth of young plants resulting in withering and possible death, particularly in dry conditions. On older plants infested leaves curl up and the curd is spoiled by contamination with aphid colonies.

All stages, including eggs, occur on stems and leaves of winter hosts (usually other cruciferous species) winged forms migrate to summer hosts from May/June onwards resulting in an early peak during July followed by a population crash. This is followed by a second, often higher peak in September/October. Early identification and treatment is essential as once colonies become established control is much more difficult and spollage is inevitable.

Peach potato aphid (*Myzus persicae*)
In recent seasons this aphid has emerged as a major pest of cauliflower crops. This aphid’s ability to develop resistance can see populations increase very quickly leading to severe infestations and crop yield implications. It doesn’t normally form dense colonies and overwinters as adult and immature stages, on winter brassicas and beet crops together with many herbaceous plants outdoors and under glass. Winged forms migrate to summer hosts in May and June reaching peaks similar to those of the mealy grey aphid. The pest is an important vector of many plant viruses.

Three insecticide resistant mechanisms exist in UK populations; metabolic - conferring resistance to organophosphates; modified acetyl-cholinesterase (MACE) conferring resistance to carbamates, knock-down (KDR) conferring resistance to pyrethroids. No resistance mechanisms currently exist in the UK with regard to the pymetrozine (Plenum®), spirotetramat (Movento®) or the neo-nicotinoids, imidacloprid (Gaucho®) and thiaclprid (Biscaya®). Use of these four actives should be made where there has been a previous history of resistance or where resistant populations are suspected.

Cultural control: Most aphid infestations develop from colonies which overwinter on old brassica crops and autumn sown oil seed rape. Plough in or otherwise destroy crop residues to help reduce aphid populations.

Aphid numbers can be reduced by a multitude of insect predators including ladybirds, hoverflies and parasitic wasps. Crops should be walked regularly to determine the balance of predators in relation to plant size etc., to determine whether the crop actually needs spraying, or whether the predators will naturally take care of the aphids. Many factors are involved in this biological ‘integrated’ approach, crop walking should be used to identify crop stage and strategy.
Chemical control: Numerous insecticides are currently approved for use. Select insecticides with the least harmful effect on beneficial insects and avoid broad-spectrum insecticides. Some synthetic pyrethroids, despite their reputations, often kill a wide range of beneficial predatory insects.

Alternate insecticides with different modes of action in order to avoid build-up of aphid resistance. Weather conditions and time of year should be taken into account when selecting aphicides. (Late in the season, from October onwards, control of cabbage aphid with pirimicarb and pymetrozine may fail and during dry periods the uptake of systemic insecticides such as spirotetramat is reduced).

Day degree models have been developed by Warwick Crop Centre which are interpreted annually to form a pest forecast available from the HDC. Studies of populations show a regular midsummer “crash” where natural mortality may be greater than the use of aphicides. This normally occurs in later July – early August.

Caterpillars

The caterpillar larvae of many species attack brassicas and may appear at almost any time between mid-May and harvest, although the degree of infestation varies from season to season. The damage caused depends upon the species responsible; both the leaves and curd may be eaten or the curd may be fouled with droppings. The very presence of caterpillars in the head also makes the product unmarketable. Some species, when nearly mature, are difficult to kill with insecticides and cause considerable spoilage. Others, even when numerous, may not justify treatment.

The diamond back moth is the most potentially damaging species as caterpillar numbers can increase very quickly leading to severe damage. The caterpillars typically feed on the underside of leaves, leaving the upper surface as a ‘window pane’. Now becoming a common pest, it has been effective and should alternate insecticide treatments.

Caterpillar predators are unlikely to give effective control where levels are high but may adequately control low infestations. Some caterpillar species only have one generation per year and thus if there is a low-level infestation on the vegetative parts of the plant, chemical control may not be necessary.

Cutworms

Cutworms are the caterpillars of several species of noctuid (night-flying) moth, the most important of which is the turnip moth, *Agrotis segetum.* The young caterpillars hatch in June and July, feed on the foliage for at least a week, before descending to feed on the underground parts of the host plant. Cutworm attacks are most severe in hot dry summers; routine treatment is not required. Warnings are issued based on trap catches sometimes combined with a weather model to define ‘high risk’ periods, when the caterpillars are small and can be controlled by rainfall/irrigation or chemical treatment. Use pheromone traps to monitor moth numbers. If local information is not available and irrigation is possible, apply at least 20mm of water as advised by the cutworm warning. In absence of rainfall or irrigation, control with a pyrethroid insecticide, timed as recommended by the spray warning.

Chemical control: Check crops regularly and only apply insecticides when necessary caterpillars are found. Treatment only the crop headlands and/or the periphery of the field may be sufficient for control as they tend to invade from field margins.

Consider using more specific control measures such as Bacillus thuringiensis, indoxacarb and diflubenzuron which have all shown good efficacy. More information on resistance levels in your area can be found via the Home Grown Cereals Authority (HGCA) who have produced an information sheet or by contacting Dr Rosemary Collier at Warwick Crop Centre.
Slugs
Slugs damage brassica seedlings and established plants. Medium to heavy-textured soils which are poorly consolidated or wet are at the highest risk of slug activity. Where populations are significantly high cauliflower curds may be grazed making them unmarketable. Slugs are occasionally taken with produce into the processing factory.

Cultural control: Consolidate soils to inhibit slug movement where necessary. Surface bait to determine the need and timing of further control measures.

Chemical control: Broadcast affected areas with an approved molluscicide if trap catches and weather pattern indicate a period of high risk.

Metaldehyde applications should conform to the present stewardship scheme which primarily considers reduction of the active ingredient in groundwater drinking supplies. Voluntary guidelines limit maximum applications to 210g of active ingredient per hectare between 1st August and the 31st December, and to a total application in a calendar year of 700g of active ingredient per hectare. Applications should also observe a six metre buffer zone next to water courses and ditches. More details of the scheme can be found at www.pelletsarepesticides.co.uk.

Cabbage stem weevil (Ceutorhynchus quadridens)
A widely distributed but sporadic pest which attacks all cruciferous crops, particularly direct drilled crops. The larvae feed in stems and petioles of plants that may subsequently wilt. The use of yellow sticky traps may aid crop monitoring and control.

Beneficial organisms
Beneficial organisms include predators, parasitoids and disease. Although a great deal of research has been undertaken regarding the biology and behaviour of natural enemy species, relatively little is known about the numerical impact that they have on pest populations in commercial brassica crops.

Natural enemies of pests can themselves be attacked by predators, parasitoids and disease; which may limit their effectiveness. They can also be affected by the use of agrochemicals, which may cause mortality, have sub-lethal effects on development or behaviour, or suppress disease outbreaks.

Finally, with cases of direct pest damage, natural enemies are often effective only after the crop damage has been done. The presence of some natural enemies in produce may also at times cause problems for growers.

Predators
Specific predators - such as ladybird larvae and adults and hoverfly larvae consume only aphids. They are able to consume large numbers of aphids but may be present in crops only at certain times of the year.

Generalist predators - many predators consume a wide range of pest and non pest species. Generalist predators include species of beetles, spiders, mites, harvestmen, lacewings, flies, earwigs, ants, bugs, wasps and vertebrates such as birds and small mammals. It is estimated that, in cereal fields, there may be about 400 species of generalist predator. Laboratory studies have shown that some predators are able to consume large numbers of pests. However, predation rates in the field will depend upon how often particular pests are encountered and whether there are alternative sources of food. Some species, such as ground beetles, eat both live and dead material.

Parasitoids
Parasitoids spend their larval stages as parasites, feeding on host tissue and killing the host in the process. They tend to be fairly specific, although some species will, for example attack several species of aphid.

The cabbage root fly is attacked by two main parasitoids, a wasp and a rove beetle. The adult rove beetle is also a predator. Rates of parasitism vary from crop to crop and are reduced usually where broad spectrum insecticides are used.

Cabbage aphids have only one parasitoid, the small wasp, *Diaeretiella rapae* which also attacks the peach potato aphid. The life-cycles of aphids and their parasitoids are closely linked. Again, levels of parasitism vary between crops and may be affected by insecticide use.

Caterpillar pests are also attacked by a range of parasitoids, mainly wasps and flies.

DISEASES
Insect pests may be attacked by a number of bacterial, fungal and viral diseases. Aphids and adult cabbage root flies appear to be particularly susceptible to fungal diseases, whilst caterpillars are more susceptible to bacteria and viruses. Fungal diseases can be particularly devastating, but may be triggered only when environmental conditions are favourable.
Exploiting beneficial organisms

1. Monitor crops regularly to determine the balance of insect predators in relation to pest numbers and plant size to determine whether to apply a pesticide or not.

2. If a pesticide is required avoid use of broad spectrum insecticides which can have a harmful effect on beneficial insects.

3. Consider the use of biological control agents such as Bacillus thuringiensis.

For further information on beneficial organisms contact Dr R Collier, Warwick Crop Centre.

Cultural control techniques:

a. Plant propagation under glass, goes a long way to reducing the incidence and severity of seedling diseases, especially downy mildew.

Irrigate plants in the morning, or soon enough to allow leaves to dry off before the night. Avoid over-watering, as this both washes nutrients and crop protection chemicals out of the compost, and creates favourable conditions for damping-off pathogens. The amount of time seedlings are allowed to sit wet in the glasshouse should be kept to a minimum.

Maintain adequate ventilation to prevent the creation of a still, humid environment around seedlings. Control feeding to prevent over-soft growth. Adequately sterilise trays to prevent carry-over of diseases such as club root, Pseudomonas, damping-off etc.

b. In the field apply nutrients according to soil analysis.

c. Encourage steady growth by ensuring a regular supply of water where possible.

d. Through good agronomy provide good growing conditions i.e. avoid poorly drained soils or the presence of soil pans.

DISEASE CONTROL

Introduction

Cauliflower is subject to many of the diseases that attack brassicas. In modular plant propagation under glass, seedling diseases are common and consistently damaging, thus requiring routine treatment. Regular monitoring during propagation and crop walking in the field, coupled with the correct identification of diseases, is an important element in minimising fungicide use.

Where possible, the guiding principle is that pesticide inputs should be minimised through prevention rather than cure. Where possible an integrated approach is needed, involving the following management steps:

Good management and planning

a. Careful site selection. Where possible avoid known potential or previous problems, thereby enhancing plant health. If possible site away from crops such as oilseed rape and other brassicas. In intensive brassica areas, where this is not possible, plough in plant remains immediately harvesting ceases, to prevent spread of diseases such as mildew, etc.

b. It is good agronomic practice to rotate crops to prevent the build-up of soil-borne diseases. In intensive areas this is not possible, therefore agronomy and disease monitoring should be of the highest standard.

c. Use resistant varieties (where available) whilst respecting the need to meet the required agronomic, quality parameters and eating requirements.

Chemical control:

a. Regularly field walk and monitor the crop for diseases as well as pests, to establish the need to take corrective action. Refer to thresholds where established. Regular monitoring, both during propagation and in the field, coupled with correct identification of diseases, is an important element in minimising fungicide use. The decision whether it is worthwhile to apply fungicides should consider the disease, time of year, degree of infection and nearness to harvest. The effect of prevailing weather conditions should also be considered.

Computer prediction models developed by Professor Roy Kennedy at the University of Worcester for Alternaria, Ringspot and White Blister are now in widespread commercial use. In the fields, growers should ensure that fungicide use is justified and that fungicides are not applied on a routine prophylactic basis.

b. Where fungicidal control is required, the following points should be considered, whilst ensuring effective control is achieved.

- Use the least toxic and persistent product.
- Use the minimum effective dose rate.
- Check that use within 5 metres of the top of the bank of watercourses is approved.
Club root (Plasmodiophora brassica)
This affects all vegetables of the Cabbage family and a number of ornamental cruciferous plants and weeds, including charlock and shepherds purse. It causes swelling of the roots which subsequently rot; the leaves turn blue/purple and wilt whilst the plant may be stunted or even die. This disease is of considerable significance in some cauliflower production areas, particularly where soil pH is naturally marginal. The resting spores of the fungus remain viable in soil for approximately twenty years.

Cultural control:
1. Consider clubroot resistant varieties where available.
2. Maintain as wide a rotation as possible in vulnerable areas.
3. Soil tests can give a guide to potential infection. Sample at least 3 - 4 months before anticipated planting date to allow change of cropping.
4. Liming to maintain a soil pH 7.0-7.5 gives good control, but there is no cure once plants are affected. In susceptible areas, patches, (usually of lower pH) of club root can occur. These small areas should be tested and limed separately.
5. High pH levels can give rise to minor nutrient problems.
6. In dry times, plants suffering from a small infestation can be brought to marketable yield by copious irrigation.
7. It is essential to use disease free modules.
8. Liming will not work immediately; it should be part of rotational planning.

Chemical control: None available.

Damping off and wirestem (Pythium spp. and Rhizoctonia solani)
These fungi attack the roots and stems of young seedlings and can cause serious losses during glasshouse propagation and occasionally affect field drilled crops.

In the field Rhizoctonia causes the stem base to become hard, brown and shrunken and the stems usually break off later in the season. Pythium control is most effective in glasshouse propagation if fungicides are used as preventative treatments pre-sowing or pre-planting. For both diseases treatment in the field is likely to be ineffective.

Cultural control:
1. Good glasshouse hygiene is essential.
2. Use plastic modular trays rather than polystyrene because when the surface coating wears off, roots and fungi can penetrate the polystyrene and present a reservoir of disease. Plastic trays can be sterilised easier and more effectively.

Chemical control: Seed treatments and applications of tolclofos-methyl as a drench during plant propagation.

Downy mildew (Peronospora parasitica)
This disease is endemic when propagating under glass but it can attack outdoor crops during the autumn.

Yellow-brown areas develop between the veins on the upper surface of the leaves corresponding with white/grey fungal growth on the under surface. Severely attacked leaves turn yellow and die off. On mature crops, the fungus may also cause black spots on the curds. Running down the floret stems, it produces a browning which can look like insect damage.

The practicalities and economics of treating maturing crops may be questionable, but in wet weather the risk of damage increases and control is justified.

Cultural control:
1. Good glasshouse hygiene is essential
2. Good glasshouse management as outlined is essential
3. The crops under propagation from January to March are most at risk
4. Varieties vary in susceptibility. Therefore choose the more resistant varieties, provided they give the other required agronomic features

Chemical control:
1. In propagation, routine treatment, both on a preventative and eradicant basis, is essential
2. Currently approved products applied during propagation include fosetyl aluminium and propamocarb hydrochloride. In field applications of azoxystrobin or Folio Gold (chlorothalonil and metalaxyl-m) will control downy mildew
3. Preferably alternate fungicides with different modes of action to avoid development of resistant strains
Dark leaf spot (Alternaria brassicae and Alternaria brassicicola)

Dark leaf spot affects the lower leaves, mainly causing symptoms ranging from small, black spots to large black/brown spots. These fungi are seed-borne and can be controlled by seed treatments that use very small amounts of fungicide compared to overall spray applications. The disease may occasionally affect the curd, but the economics of treating maturing crops may be questionable.

Cultural control:

i. Good glasshouse hygiene is essential
ii. Good glasshouse management is essential
iii. Plough in crop residues as soon as possible
iv. If possible, isolate brassica crops from each other particularly oilseed rape

Chemical control:

i. Currently approved fungicides include protectant sprays of azoxystrobin and pyraclostrobin or eradicant applications including tebuconazole, difenconazole, prothioconazole or boscalid.

Ring spot (Mycosphaerella brassicicola)

Circular grey or brown spots are formed on the leaves and stem being more frequent on the outer leaves. Very small black fruiting bodies of the fungus are dotted over the surface of the spots in concentric rings. Badly affected leaves turn black and prematurely wither. Debris of previously affected brassica crops is the main source of the disease.

Cultural control:

i. Isolate out-door plants beds
ii. If possible, have a wide brassica rotation
iii. If possible, isolate Cabbage crops from other brassica

Chemical control: Not common on the top of the curd and therefore the economics of treating maturing crops in the eastern counties may be questionable. In situations where significant leaf area may be lost or wrapper leaves are likely to be affected approved fungicides are the same as those used for the control of dark leaf spot.

White blister (Albugo candida)

White blister is now becoming more frequent. All the aerial parts of the plant may be affected including the curd. White patches, at first small and glossy but later powdery, appear on the lower surfaces of leaves and on stems. On the curd it causes individual flower buds to swell, grow above their neighbours which eventually produce white talc like spores.

Cultural control: Plant beds should be in a dry open position.

Chemical control: Currently approved fungicides include azoxystrobin, chlorothalonil and metalaxyl-m.

Bacterial soft rot (Pectobacteria carotovora and Pseudomonas spp.)

In the mature crop the soft internal tissue of the stem may disintegrate, reducing it to a bad smelling slimy mess. In winter cauliflower the curd may show brown discoloured patches resembling frost injury.

The biggest problem from bacterial soft rot is the invasion through wounds to which cauliflower curds are very susceptible during cutting and subsequent packing. Infection begins as small, yellow water soaked specks in the florets, and as decay progresses the florets become increasingly discoloured and “water soaked”.

Cultural control: Avoid damage during cutting and packing. Immediately cool crop once cut and store at low temperature (see Harvest and Storage Section).

Bacterial spot (Pseudomonas maculicola)

Not a widespread bacterial disease but can be a locally severe problem. Leaves have small brown or purplish spots and become distorted and finally turn yellow and drop off. Small brown or dark brown spots conform on the surface of the curd. Disease can be seed or soil-borne.

Cultural control: Adequate rotation together with strict hygiene, especially in module production under glass.

Virus diseases

a. Turnip mosaic virus is probably the most severe virus that attacks cauliflower. Dark necrotic rings and spots on the older leaves of plants associated with severe stunting are the typical symptoms.

b. Cauliflower mosaic is reasonably common. Virus symptoms are vein clearing followed by vein banding with stunted growth and distorted leaves. Affected plants are usually very susceptible to frost injury. Cauliflower and turnip mosaic viruses often infect the same plant. Peach potato aphids spread both viruses. Aphicides will not prevent introduction of virus but will restrict its subsequent spread.

c. Turnip Yellows Virus (TuYV) formerly Beet Western Yellows Virus (BWYYV) commonly affects brassica crops. Symptoms vary considerably as the virus is commonly associated with CaMV or TuMV. Recent work at Warwick Crop Centre suggests that TuYV is implicated in tipburn in processing storage cabbage.
Cultural control: If possible, grow apart from other brassica crops. Isolate outdoor beds from other growing brassica. Destroy and plough in immediately and all other brassica crop residues, especially overwintered crops.

Chemical control: Control the aphid vectors, especially in outdoor plant raising beds or early in the life of direct drilled crop.

Black rot (Xanthomonas campestris)
This is a bacterial disease, commonly found on cauliflower particularly during the winter months.

Initial field infections are nearly always seed-borne or spread during propagation but then become endemic by surviving on incorporated residues. The symptoms are V-shaped chlorotic lesions on the leaf margins. Within the lesions the veins become blackened. A characteristic ring of vascular tissue can be seen when the stalks of affected plants are cut transversely. The disease can expand very rapidly in warmer damp conditions.

Control: Plant debris is a source of infection together with cruciferous weeds (e.g. shepherds purse). Quick removal or incorporation of crop residues is advised.

Where the disease is identified a rotational break of at least two years should be practised.

Seed testing: Involves batch treating of major seed lots. A negative result does not guarantee complete freedom for the seed lot but rather present at an economically insignificant level.

Where seed batches are infected, hot water treatment is currently the only viable method of control. This can affect seed vigour.

Physiological disorders

Hollow stem
When the heads are harvested, the butts have hollow centres. The primary cause is not known and when the cavity is dry, hollow stem causes no problem with the appearance or eating quality of the head. The basic symptom results from a failure of the internal tissues to keep up with the increase in stem diameter after a period of rapid growth. One school of thought suggests that where the cavities are clean and there is no rotting that the trouble has been caused by a nitrogen-potassium imbalance, i.e. an excess of nitrogen. Another suggestion is that the hollowness may be due to rapid growth after irrigation or rain. The problem is generally seen in large leafy plants.

Where the hollowness is accompanied by rotting, boron deficiency may be suspected. If this condition is common on the farm, boron should be applied to the soil before planting or sowing. Borax is a popular standard boron fertiliser and is applied at 22-26 kg/ha. However, as it is not easy to apply evenly the commercial product Solubor® applied as a spray, may be preferred. Other boronated fertilisers can be used if they have the correct N,P,K ratio. Leaf sample analysis should take place to justify any treatment.

Bracting
Bracting occurs when the curd does not develop successfully in periods of high temperature. When flower buds form the bract or leaf buds are usually suppressed, but in high temperatures the bract buds grow and this results in green leaves forming within the curds (i.e. bractiness). Varieties vary in susceptibility therefore consult seed house representatives for information.

Riciness
High temperatures also predispose the curds to “riciness”, a condition in which the flower stalks become extended to resemble a woolly covering to the curd. This often happens when warm temperatures cause sudden growth to take place after a time of little growth. Varieties vary in susceptibility therefore consult seed house representatives for information.

Strangles
This is first noticed in the field when plants fall over or break off at soil level. The disease is caused by secondary fungal pathogens and starts in the seedling stage. It may not be noticed until the plants have become much larger, the stem is constricted near the ground and often swollen above the constriction. The disease is initiated by injury from wind or careless planting.

Cultural control: Avoid exposed locations. Take care at transplanting or inter-row to avoid injuring the stem.

Pinking
When the curds are exposed to high light intensities, there is a tendency for anthocyanin to form and the curds to turn pink. Varieties vary in susceptibility therefore consult seed house representatives for information.

Premature buttoning
This occurs mainly in the early planted, new season crops. Buttoning is caused by curd initiation and growth before the leaves have developed sufficiently to support full curd formation. It is affected both by variety and environmental factors. Early summer varieties, which have the lowest leaf number at maturity button more readily if subjected to conditions which retard growth once curd initiation has been reached.
Weed control

The use of herbicides can be reduced considerably by attention to the following:

a. Use of stale seedbed technique.

b. Avoiding use of covers where resistant weeds e.g. Pennycress is a problem.

c. Identifying those weeds present and targeting with the use of more selective active ingredients.

d. Use of mechanical weeding machines frequently through the crop. These should be set to give minimal disturbance to the soil in drier conditions and so that soil is lightly thrown around the base of the stem thus “smothering” seedling weeds. New designs involving spring tines are now available to effect better control of seedling weeds within the cropping row. Provided soil conditions are not too wet this method is much preferred.

A range of soil acting residual and post emergence contact herbicides is available. Generally approved herbicides for cauliflowers include pendimethalin, dimethenamid p, metazachlor, clomazone and s-metolachlor. Select a herbicide according to the weed spectrum present.

For residual herbicides to work effectively a fine, firm, moist tilth is required. Cloddy soil conditions greatly reduce the effectiveness of herbicides.

APPROVED USES NOT INCLUDED ON THE PRODUCT LABEL

In many circumstances, particularly for minor crops, product labels do not include all of the approved uses and growers wishing to check the approval notice of a particular product should note that this information is available using the LIAISON® search accessible via their Red Tractor Farm Assurance home page after logging in.

A search on the Extension of Authorisation for Minor Use in the UK (formerly known as ‘SOLAs’) by crop or product name should yield a results page. A click on the product name should link to a summary of the approval information. Near the bottom of the summary is the specific off-label number (e.g. 0246/09) and this link will open up a pdf of the current EAMU document giving details of the extension of use.

NUTRITION

MACRO NUTRIENTS

Excessive use of macronutrients is not only wasteful, but can be costly and have a detrimental effect on groundwater supplies.

Nitrogen in particular should be tailored accurately to the precise needs of the cauliflower crop. Excess nitrogen should be avoided because:

a. Maturity can be delayed.

b. Soft unbalanced growth results in increased damage when handling, poor shelf life and increased susceptibility to disease.

c. It contaminates groundwater supplies, possibly introducing the health risk to drinking water and exaggerates eutrophication.

Growers should use a soil nitrogen prediction system such as Soil Nitrogen Supply (SNS) and where applicable Soil Mineral Nitrogen (SMN) to schedule efficient nitrogen applications. Nitrogen prediction models such as WELLN offer a complete solution to assessing nitrogen requirement.

‘WELL N’ takes into account the residual nitrogen in the soil and the amount of nitrogen released from the organic breakdown of the previous crop residues, and predicts the total nitrogen required. Residual nitrogen testing thus enables applications to reflect accurately the cauliflower crops need, taking into account soil residues, thus reducing the opportunity of excess nitrogen leaching into ground water.

If it is not possible to undertake nitrogen analysis, a soil nitrogen index should be used, taking into account previous crop and manuring (see Appendix). A computer based system is an alternative such as PLANET v3.0 has been developed by ADAS and SAC with funding and support from Defra and the Scottish government.

On intensive brassica land, where samples are being taken frequently for soil nitrate determination, it is cheap and economical to analyse for pH, phosphate, potassium and magnesium. Otherwise, in the absence of crop failure, the field should be sampled and analysed at least every three years. Interim nutrient status can be evaluated using a balance sheet method.

Growers must ensure that when planning fertiliser applications, soil type and variety are taken into consideration.

Nutrients must be applied according to a recent soil analysis. Typical fertiliser recommendations are shown in the Appendix.
Establishment of both drilled and transplanted crops can be adversely affected by excessive levels of fertiliser salts, especially nitrogenous fertiliser in the seedbed. The risk of poor results from high salts is less for transplants than for seed.

Where high rates of potash are also required, the total nitrogen and potassium application prior to drilling, should not exceed 190 kg/ha; the base nitrogen level may be reduced to 50 kg/ha, and the remainder of the potassium should be applied well before drilling (in the winter if possible) and incorporated into the soil.

NITRATE VULNERABLE ZONES

Certain vegetable production areas within the U.K. may be designated nitrate vulnerable zones (NVZ). These are areas where water sources are high in nitrate, and growers are asked to observe a programme of measures, designed to reduce nitrate loss from the land and help reduce nitrate levels in water.

Key action points relevant to brassica growers are:

i. Do not apply inorganic nitrogen fertiliser between 1st September and 1st February unless there is a specific crop requirement during that time.

ii. Do not exceed crop requirement for quantity of nitrogen fertiliser on each field every year, taking account of crop uptake and soil supply from soil organic matter, crop residues and organic manures.

iii. Application of organic manures should not exceed 170 kg N/ha of total nitrogen averaged over the farm area each year or 250kg N/ha for an individual field.

iv. Do not apply fertiliser or manures when the soil is water logged, flooded, frozen hard or covered in snow.

v. Consider a cover crop to use up excess nitrogen over the winter months, ryegrass, is a good choice as it does not involve a ‘green bridge’. Sowing should be completed before September 15th to be of any value.

Trace elements

These should only be applied when deficiencies are evident from soil or tissue analysis or when crop growth and development appears to be reduced. In the absence of adverse symptoms, a healthy looking crop may not need foliar application of trace elements.

pH

In common with all horticultural brassica crops the soil pH for cauliflower should be maintained at 7.0 to 7.5 although this can cause problem where potatoes are grown in rotation.

IRRIGATION

The greatest response is likely to be obtained following rapid establishment by irrigating immediately after planting out transplanted crops.

Plants under drought stress tend to be susceptible to attack by pests; therefore, irrigation helps to improve yield and quality.

Where available, apply 25mm of irrigation at 25mm soil moisture deficit. If water supply has been limited, an application of 25mm, made 21 days before cutting, has proved very beneficial.

HARVEST AND STORAGE

HARVESTING

Prior to harvesting all growers need to ensure that the statutory harvest intervals have elapsed for every pesticide used and crop spraying records need to show a safe harvesting date (positive release dates) for each application.

The cutting costs constitute a significant proportion of cauliflower production costs, therefore, aim for the least number of harvests as possible.

Growers should ensure that harvested product is not contaminated by or exposed to anything that could affect food quality.

Prediction

Cauliflower prediction models are available from a variety of sources. Models use information taken at curd initiation and meteorological data to predict cutting date. Hot weather enhances maturity and reduces the cutting interval.

Cutting

When heads are exposed ready for harvesting, they can only subsequently deteriorate.

Various mechanical aids are used to assist the harvesting process but during cutting cauliflower curds are at risk from physical damage such as cuts, grazes and bruises, all of which speed up post-harvest deterioration as well as adversely affecting appearance. It is therefore essential that the method of harvesting poses the least risk of physical damage.
Tractor-mounted harvesting aids e.g. cups or belts should be used. This enables pickers to place the trimmed curds carefully in a cup or on a belt that gently transfers them to a covered trailer towed behind the tractor, where they are graded and packed. The finished product is therefore immediately taken out of direct sunlight. Preferably the cauliflower should remain in this packaging right up to point of sale as it reduces the amount of direct handling of the curd and hence reduces the risk of damage. Placing cauliflowers that are destined for the fresh market directly into a bulk bin for subsequent re-packing is not recommended due to the risk of abrasion and bruising.

Palletisation on the rig also assists management and helps to prevent damage to the box and its contents. It is acceptable to harvest cauliflowers for processing directly into a bulk bin.

The practice of field packing, direct into the customer’s container, leaves the trimming waste in the field to be ploughed in.

Although harvesting is exempt from the Food Safety (General Food Hygiene) Regulations, the more sophisticated packing rigs do need a hazard analysis assessment.

Cooling

Cauliflower has a very high post-harvest respiration rate. Unless cooled rapidly soon after cutting, cauliflower will rapidly lose turgidity and moisture loss will continue until arrested by chilling. Therefore delays between cutting and the commencement of cooling should be minimised. The causes of cauliflower deterioration (dehydration, microbiological attack and physiological changes) are temperature related. Cooling immediately after harvest, followed by a cool chain distribution, is the most effective means of preserving quality and shelf life.

Cooling rate

Equipment must be capable of reducing cauliflower temperature down to a minimum of 6°C in 12 hours. Cooling rates faster than this are unnecessary and require very expensive cooling equipment.

Cauliflower is sensitive to chilling injury and temperatures of less than 2°C can actually reduce shelf life and adversely affect crop qualities. Cauliflowers should be cooled and held in conditions where the relative humidity is in excess of 95% and this should be maintained right through to the retail point of sale.

Cooling equipment

Conventional direct expansion refrigeration cool stores are not generally suitable unless coupled with supplementary humidification and some form of forced air ventilation.

Wet air coolers with positive ventilation such as ice bank coolers are ideal. Other suitable systems use a water to air heat exchange or inject a fine moisture mist into the cooling air (the Hydrair method) e.g. Bi-tec Air-spray, Howe-Cool and Polacell. Most refrigeration engineers can supply a suitable wet air system if they are provided with detailed design information. The major disadvantages are the difficulty of cooling packaged produce and the need for moisture resistant packaging materials.

Vacuum cooling is the fastest method and also has the advantage of being able to cool overwrapped and packaged produce. Once cooled, cauliflower must be held at the target temperature, this often involves a holding store.

If cauliflower needs pre-packaging, it should be taken out of the primary cooling equipment, passed through the packhouse, then re-cooled prior to despatch.

RESIDUES AND CONTAMINANTS

Red Tractor Farm Assurance Fresh Produce is aware that a key area in the production of fresh produce which requires continued attention by growers and their advisers is that of keeping pesticide residues to a minimum. This issue is not just one of meeting the MRL trading standard but ensuring that any individual or multi residues are kept as low as possible below this level.

The key targets are:

- Optimising late applications of fungicides and insecticides to the edible part of the crop.
- Optimising the use of post harvest treatments.
- Ensuring minimum harvest intervals are followed
- Ensuring that application equipment is applying products correctly
APPENDIX 1: MINOR PESTS OF LEAF AND FLOWERHEAD BRASSICAS

Chemical treatment for these pests is only justified if they are present in crops or where there is a history of infestation on the farm.

Beet cyst nematode (Heterodera schachtii)

Found mainly in East Anglia and the Isle of Axholme, vegetable brassicas are rarely damaged they are however effective hosts on which the nematode can increase to a level that will affect future beet crops.

Sample if its presence is suspected and avoid frequent cropping with alternative host crops if the nematode is present.

Brassica cyst nematode (Heterodera cruciferae)

This pest is widely distributed; it rarely reduces crop yield. Cysts survive in the soil for several years until stimulated to hatch by the presence of a fresh host crop.

Sample if its presence is suspected and avoid over-cropping with brassica crops. Routine treatment is rarely justified.

Cabbage leaf miners (Phytomyza rufipes and Scaptomyza aplicalis)

Both species are widely distributed, occasionally damaging brassica crops particularly in hot dry seasons. As large populations can develop in oilseed rape crops, avoid siting crops nearby if possible. Control measures are only required if damage levels are high; sprays applied for diamond back moth will keep leaf miner under control.

Cabbage seed weevil (Ceutorhynchus assimilis)

In recent years large numbers of adult cabbage seed weevils have arrived on brassica crops in some localities in mid-summer. Weevils can damage the mature crop by feeding on the spear or outer leaves and contaminate vegetable brassicas prior to harvest. They have occasionally checked the growth of newly planted crops.

Vulnerable crops, particularly those on the point of harvest, should be examined frequently from mid-July to mid-August. Applications of a synthetic pyrethroid for control of caterpillars should kill some weevils and deter others from entering the crop.

Cabbage stem flea beetle (Psylliodes chrysocephala)

A widespread and locally serious pest attacking most overwintering brassica crops especially seed crops. The buildup of this pest on oilseed rape may lead to more serious attacks on vegetable brassicas. Even comparatively light attacks can reduce the size of heads.

Site overwintering vegetable brassica crops as far as possible from oilseed rape or other seed crops which can harbour large number of the pest. Pyrethroids will give some control if applied as soon as serious adult feeding is seen, or when larval damage is noted.

Cabbage whitefly (Aleyrodes proletella)

Most problematic in hot, dry years damage is caused by the adults and white scale-like larvae living on the undersides of the leaves and sucking the sap. Their presence in the finished product is undesirable necessitating control when populations increase.

Up to five generations a year may occur as adults over-winter on the undersides of the leaves. Severe infestations produce a sticky secretion that attracts a black-sooty mould.

Destroy overwintering brassica crops soon after harvest to prevent the movement of whitefly to the new season’s crops. Treatment is rarely necessary, but pymetrozine, thiacloprid, acetamiprid and spirotetramat will provide some control given good coverage.

Flea beetles (Phyllotreta spp.)

Most problematic in direct drilled crops, small holes are eaten in cotyledons, stems and first and second true leaves. In warm dry conditions, the damage can be severe and seedlings may be killed.

Damage to young plants is fairly rare and most crops establishing quickly grow away satisfactorily without further treatment.

If damage is severe, or seedlings are growing slowly, use pyrethroids for control.
Leatherjackets (*Tipula spp.*)
Leather jackets are only likely to be of importance in fields previously in grass, or weedy stubble. Most damage occurs in the spring.

Plough grassland before early August to prevent egg laying. If early ploughing is not possible, seek advice on potential risk.

Turnip gall weevil (Ceutorhynchus pleurostigma)
A localised and sporadic pest frequently found in southwest England. It attacks late-sown or late-planted cauliflower; the legless grubs feed on the roots within hollow marble-sized galls. Yields are rarely affected.

Good soil and growing conditions help plants withstand attack.

Wireworms (Agriotes spp)
Wireworms are only likely to be of consequence in fields cropped soon after long term grass/set aside.

Plough early with additional cultivations if wireworm damage is anticipated. Seek advice on degree of risk if in doubt. Use of pheromone traps can help ascertain risk.

Swede midge (Contarinia nasturii)
Midge occasionally causes severe localised damage in the growing points of young plants, resulting in premature death of the plant or blindness that may be followed by a stem rot. The first generation of larvae appears during the second half of May/beginning of June. There are two or three generations in a season and one of the later ones may attack side shoots. High humidity situations favour their build-up, whereas drought slows or stops emergence. The larvae hatch from eggs laid in groups of 15-25 and feed on the young tissue in the growing points.

At present no chemical has approval for the control of swede midge, however, midge larvae control has been observed when pyrethroids have been used for caterpillar control.
APPENDIX 2: TYPICAL FERTILISER REQUIREMENTS FOR CAULIFLOWER (KG/HA)

Based on DEFRA Fertiliser Recommendations (RB209)

<table>
<thead>
<tr>
<th>Nutrient (kg/ha)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5+</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer and Autumn a</td>
<td>290</td>
<td>260</td>
<td>235</td>
<td>210</td>
<td>170</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>Winter hardy/Roscoff a</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>60</td>
<td>0a</td>
<td>0b</td>
</tr>
<tr>
<td>Seedbed</td>
<td>190</td>
<td>160</td>
<td>135</td>
<td>110</td>
<td>100</td>
<td>80</td>
<td>0b</td>
</tr>
<tr>
<td>Top dressing</td>
<td>200</td>
<td>150</td>
<td>100</td>
<td>50M</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>275</td>
<td>225</td>
<td>(2-)</td>
<td>175</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Potassium</td>
<td>150</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:

- The recommendations assume overall application. Band spreading of nitrogen may be beneficial (see ‘Techniques for Applying Fertiliser’ above).
- A small amount of nitrogen may be needed if soil nitrogen levels are low in the 0-30cm of soil (see ‘Techniques for Applying Fertiliser’ above).

With Roscoff Cauliflowers for February cutting in frost-free areas, apply the top dressing of nitrogen in late autumn. For crops to be harvested later than mid-February apply top dressings in early February. For winter hardy cauliflower nitrogen top dressing should be applied in the January to March period, depending on the prevailing weather. The maximum rate should only be applied to later harvested crops.

The magnesium/potassium ratio should not exceed 1:4; otherwise compensatory magnesium will need to be applied. For vegetable crops, soils should be maintained at 3 for phosphorous, and 2 for potassium. At these levels only maintenance amounts of fertiliser are needed.

Detailed SNS tables based on previous cropping and average annual rainfall can be found in DEFRA publication

Fertiliser Recommendations for Agricultural and Horticultural Crops – 78th Edition (RB209) published by the Stationery Office (ISBN 0 11 243058 9) telephone orders 0870 600 5522 or via the internet at www.tso.co.uk . The entire publication can also be downloaded free of charge from www.defra.gov.uk/food-farm/land-manage/nutrients
APPENDIX 3: GUIDELINES ON MINIMISING PESTICIDE RESIDUES

These guidelines have been produced after consultation between crop stakeholders and the Fresh Produce crop author. They will be developed over the coming seasons as knowledge of minimising residues develops.

Growers should consult with their crop protection adviser to ensure other best practices are not compromised before considering these guidelines. The table below lists the active ingredients that may give rise to crop residues in cauliflower, and details potential alternative strategies to help minimise residue detection. Within the brassica crop group residues are seldom found in cauliflower. Most residues found are less than 10% of the MRL.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Target: pest, weed, disease</th>
<th>Current position</th>
<th>Suggested guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>tebuconazole and boscalid</td>
<td>Mildew, White Blister and Ringspot</td>
<td>Residues found in < 5% of samples</td>
<td>Avoid applying tebuconazole and boscalid to crops after the end of September as low light levels and temperatures can reduce degradation increasing the likelihood of residues</td>
</tr>
<tr>
<td>pyrethroids</td>
<td>Caterpillars</td>
<td>Residues found in < 5% of samples</td>
<td>Most pyrethroids have a zero harvest interval. However, application within a day of harvest can lead to detectable residues. Whilst these residues are well within the current MRLs it is advisable to avoid the application of these insecticides within 3 days of harvest</td>
</tr>
</tbody>
</table>

NOTE: Dithiocarbamate residues can be found in crops where no actives of this group have been applied this is explained by naturally occurring products within all brassicas which cannot currently be differentiated during residue analysis.
Certification Bodies

Your routine point of contact with the Scheme is through your Certification Body. Certification Bodies are licensed by Red Tractor to manage membership applications and to carry out assessment and certification against the Standards. The table below shows which Certification Bodies apply to each enterprise.

<table>
<thead>
<tr>
<th>Certification Body</th>
<th>Beef and Lamb</th>
<th>Dairy</th>
<th>Combinable Crops and Sugar Beet</th>
<th>Fresh Produce</th>
<th>Pigs</th>
<th>Poultry</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSF</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kiwa PAI</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SAI Global</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SFQC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NIFCC (Northern Ireland)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>QWFC (Wales)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSF Certification
Hanborough Business Park
Long Hanborough
Oxford OX29 8SJ
Tel: 01993 885739
Email: agriculture@nsf.org
Web: www.nsf-foodeurope.com

Kiwa PAI
The Inspire,
Hornbeam Square West, Harrogate,
North Yorkshire HG2 8PA
Tel: 01423 878878
Email: paienquiries@kiwa.co.uk
Web: www.kiwa.co.uk/pai

SAI Global Assurance Services Ltd
PO Box 6236,
Milton Keynes MK1 9ES
Tel: 01908 249973
Email: agrifood@saiglobal.com
Web: www.saiglobal.com/assurance

SFQC Ltd
Royal Highland Centre,
10th Avenue, Inglston,
Edinburgh EH28 8NF
Tel: 0131 335 6605
Email: retractor@sfqc.co.uk
Web: www.sfqc.co.uk

NIFCC [Northern Ireland]
Lissue House,
31 Ballinderry Rd, Lisburn,
Northern Ireland BT28 2SL
Tel: 028 9263 3017
Email: info@nifcc.co.uk
Web: www.nifcc.co.uk

QWFC [Wales]
PO Box 8, Gorseland,
North Road
Aberystwyth SY23 2WB
Tel: 01970 636688
Email: info@wlbp.co.uk
Web: www.wlbp.co.uk